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ABSTRACT
Measurement of impulse responses is a common task in audio signal
processing. In this paper three common measurement techniques
are reviewed: Maximum length sequences, exponentially swept
sines and time delay spectrometry. The aim is to give the reader a
brief tutorial of the methods with a special focus on deficiencies
of the algorithms, aiding in the choice of the best algorithm for a
task at hand. Additionally, for time delay spectrometry, a novel
improvement is presented, lifting its restriction to relatively short
impulse responses.

1. INTRODUCTION

Measurement of impulse responses is a common task in audio
signal processing. Usual applications include measurement of
speakers and measurement of room impulse responses. Typically
PC hardware is used due to the ever decreasing prices for ever faster
processors and the availability of high quality audio devices.

When discussing impulse response measurement techniques,
it therefore makes sense to assume a setup as depicted in figure 1.
Inside the PC, a measurement signal x(n) is generated. This is
converted to a continuous-time signal x̄(t) and fed to the system
under test with the (unknown) impulse response h̄(t). The resulting
output ȳ(t) is sampled to obtain y(n) which is used together with
the known x(n) to determine the sampled impulse response h(n).
The following assumptions are made:

• The whole system between x(n) and y(n) shows time-in-
variant behavior. This holds with sufficient accuracy when
the system to be measured is time-invariant, the jitter of the
ADC and DAC clocks is low and the ADC and DAC run from
the same clock so that the sampling rates match perfectly.
The latter is usually the case for typical PC equipment.

• All involved components are sufficiently linear. Usually
reduction of the measurement level and hence the maximum
amplitude of the measurement signal is sufficient to restore
almost linear behavior in case non-linear distortion is ob-
served. However, a small amount of distortion may remain,
recommending a measurement technique which is tolerant
to slight non-linearities.

• The impulse response may be long (e.g. a reverberant room),
nevertheless there is an N such that h(n) is practically zero
for n > N, so that is is sufficient to determine h(n) for n up
to that N.

• A very accurate measurement is desired. Especially for arti-
ficial reverberation with a measured room impulse response,
its signal to noise ratio (SNR) has to be very high.
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x(n)
y(n)
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Figure 1: Assumed setup for measurement of impulse responses.

2. IDEAL IMPULSE RESPONSE MEASUREMENT

Theoretically, any measurement signal x(n) may be used for esti-
mating the unknown impulse response h(n). Ignoring any noise
terms, the measured signal y(n) is the convolution

y(n) =
N

∑
k=0

x(n− k)h(k), (1)

where N is the order of the (significant part of the) impulse response.
By rewriting this to matrix form as

y(0)
y(1)

...
y(N +L−1)

=


x(0) 0 · · · 0
x(1) x(0) · · · 0

...
...

. . .
...

0 0 · · · x(L−1)




h(0)
h(1)

...
h(N)

 ,

(2)
where L denotes the length of the measurement signal x(n), it is
apparent that given x(n) and y(n), h(n) may be computed using a
linear least squares approach. In the presence of noise, this will
give the minimum mean square error estimate, i.e. maximize the
SNR.

Unfortunately, in practice, very long impulse responses may
have to be measured and to attain high suppression of measure-
ment noise, long measurement signals may be needed, resulting in
extremely large problems which may turn out to become computa-
tionally intractable. Therefore, measurement signals are required
that allow a simpler computation of the impulse response.

3. PSEUDO-NOISE MEASUREMENT SEQUENCES

One approach to simplify the problem is to instead look at the
equivalent for stochastic signals, the well-known Wiener-Hopf
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Figure 2: Linear feedback shift register for generation of a maxi-
mum length sequence (of length 24−1 = 15 in this case).

equations
rxy(0)
rxy(1)

...
rxy(N)

=


rxx(0) rxx(1) · · · rxx(N)
rxx(1) rxx(0) · · · rxx(N−1)

...
...

. . .
...

rxx(N) rxx(N−1) · · · rxx(0)




h(0)
h(1)

...
h(N)

 ,

(3)
where rxy(n) and rxx(n) denote cross- and auto-correlation, respec-
tively. By choosing the measurement signal such that

rxx(n) =

{
ξ � 0 for n = 0
0 for 1≤ n≤ N,

(4)

equation (3) simplifies to h(n) = rxy(n)/ξ , so that computation of
the impulse response reduces to cross-correlating x(n) and y(n).

While equation (4) holds for white noise sequences, it only
approximately does for finite length excerpts of white noise. In
practice, it is usually preferred to use pseudo-noise sequences with
known properties, such as the commonly used maximum length
sequences [1], which repeat with period L and have

rxx(n) =

{
1 for n = 0
−1/L for 1≤ n≤ L.

(5)

Thus, for sufficiently large L, which may be obtained without high
computational demands, the auto-correlation can be made arbitrar-
ily close to ideal. The remaining deviation from the ideal is only a
DC offset, which is often irrelevant in practice anyway.

Another reason to use large L is that with a periodic measure-
ment signal, the measured impulse response will also be periodic
and hence, L has to be longer than the effective length N of the
impulse response to avoid time aliasing effects.

Maximum length sequences may be generated computationally
cheap by employing linear feedback shift registers as depicted
in figure 2, where a simple shift register and few exclusive-or
gates are sufficient. The resulting bit sequence is remapped to a
bipolar sequence with values −1 and 1. To compute the correlation,
no multiplications are necessary, only changes of the sign and
additions. Furthermore, the number of additions may be reduced
by using the fast Hadamard transform [2].

In addition to the low computational costs, another alleged
benefit of maximum length sequences is their ideal crest factor,
as they only take on values −1 and +1, thus maximizing the to-
tal energy of the measurement signal when the peak amplitude is
constrained. However, this is only true for the discrete time sig-
nal; after digital-to-analog conversion, the crest factor is severely
deteriorated.

For the common case of a standard digital-to-analog converter
with an output band-limited to half the sampling rate, the results
depend on the low-pass, but in general will be similar to figure 3.
For the example shown, the crest factor is increased to about 2.5.

−1

0

1

(a) Discrete maximum length sequence and continuous
signal obtained by band-limited reconstruction.

x

p(x)

−2 −1 0 1 2

(b) Typical distribution of amplitude val-
ues after reconstruction.

Figure 3: Example of a maximum length sequence and the continu-
ous signal obtained by band-limited reconstruction.
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L = 16383
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Figure 4: Simulation setup for evaluation of the effect of insufficient
headroom on MLS measurements.

It should be noted that this increase is due to an increase of the
maximum amplitude value, making careful calibration of the play-
back level necessary [3]. Calibrating with a bipolar sequence is
preferable, but determining whether clipping occurs may not be
easy as non-linear distortion is is not easily discernible. If instead
a sinusoid is used for calibration, non-linearities become apparent
by the occurrence of harmonic distortion, but sufficient headroom
(8dB for this example) has to be granted to allow for the higher
peak amplitudes of the bipolar sequence. Otherwise, non-linear
distortion will occur which has a severe impact on the measurement
performance [4].

To undermine the adverse effect of insufficient headroom, a
simulation experiment as depicted in figure 4 was conducted. To
simulate the analog domain, the discrete signal is up-sampled by
a factor of 128 and low-pass filtered with a Kaiser-windowed sinc.
The obtained quasi-continuous signal is optionally clipped to the
range [−

√
2,
√

2], corresponding to 3dB headroom. After another
low-pass and down-sampling, the estimated impulse response ĥ(n)
is determined by correlating with the original sequence. Figure 5(a)
shows the corresponding transfer function measured without clip-
ping; as expected, the effect of the finite slope of the anti-aliasing
low-pass becomes visible toward high frequencies. In compari-
son, the transfer function of figure 5(b) as measured with clipping
looks severely distorted. The effect of clipping could easily be mis-
taken for measurement noise, but as it is completely deterministic,
increasing measurement time will not improve the result.
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(b) With clipping.

Figure 5: Resulting transfer functions as measured with the setup
of figure 4.

4. EXPONENTIALLY SWEPT SINE

Another approach to impulse response measurement is to construct
a measurement signal x(n) for which a signal x−1(n) can easily be
determined that is inverse to x(n) in the sense that the convolution

L−1

∑
k=0

x(k) · x−1(n− k) = C ·δ (n−n0) (6)

yields a (potentially) scaled and time-shifted unit impulse. Then
the convolution of the measured signal y(n) and the inverse sig-
nal x−1(n) will give the scaled and time-shifted impulse response

C ·h(n−n0) =
L−1

∑
k=0

y(k) · x−1(n− k). (7)

Farina proposed [5, 6] to use an exponential sine sweep

x(n) = sin
(

ω1 · (L−1)
log(ω2/ω1)

· (e
n

L−1 log(ω2/ω1)−1)
)

(8)

with an instantaneous frequency increasing exponentially from ω1
at n = 0 up to ω2 at n = L−1. While the crest factor

√
2≈ 1.41 is

slightly worse than for an MLS signal, it is substantially better than
for an MLS signal after band-limited reconstruction.

Exp. swept sine,
L = 32768

inversion

↑128 LP tanh LP ↓128

convolution

ĥ(n)

Figure 6: Simulation setup for evaluation of the effect of non-
linearities on exponential sweep measurements.

The inverse signal can be obtained by time reversal and ampli-
tude scaling according to

x−1(n) = x(L−1−n) · (ω2/ω1)
−n

L−1 (9)

which approximates equation (6) with n0 = L− 1. The scaling
factor is not given in the literature, but can be found to be

C =
πL ·

(
ω1
ω2
−1
)

2(ω2−ω1) log
(

ω1
ω2

) . (10)

The approximation is in the sense that the convolution of x(n) and
x−1(n) results in a unit impulse (non-ideally) band-limited to the
range (ω1,ω2), as can be seen in figure 7(a). While ω2 = π may be
chosen, due to the exponential sweep, we need ω1 > 0, precluding
measurement of DC components and very low frequencies (in
the example, ω1 = 0.01 and ω2 = π). The amount of overshoot
and pass-band ripple may be traded off against steepness of the
transition areas by applying a time-domain window on the sine-
sweep, i.e. fading in and out.

Using an exponential sweep has two major advantages: More
energy is present in the measurement signal at low frequencies, and
non-linearities of the system to be measured result in anti-causal
components in the impulse response which can be easily separated.
The concentration of energy at low frequencies is beneficial as the
resulting higher accuracy is often desirable in audio applications.

The graceful handling of non-linearities stems from the fact
that the time

∆n(k) =
log(k +1)

log(ω2/ω1)
(L−1) (11)

for the instantaneous frequency of the sweep to rise by a factor
of k + 1 is constant. This means that if the output of the system
contains the k-th harmonic of the excitation signal, that frequency
will only be reached by the excitation signal ∆n(k) samples in the
future. Therefore in the computed impulse response, effects of the
k-th harmonic will become visible starting at −∆n(k), i.e. in the
anti-causal part.

To demonstrate the effect of non-linearities on the measurement
using exponentially swept sines, an experiment similar to one for
maximum length sequences was conducted, but with the clipping
replaced by a tanh function, see figure 6. The tanh function re-
sults in a total harmonic distortion of about −25dB for a full-scale
sinusoid, representing a rather strong non-linearity for a system
that should usually be assumed to be linear. Nevertheless, by limit-
ing the impulse response to the causal part, the resulting transfer
functions in figures 5(a) and 5(b) with and without non-linearity
are very similar, mainly differing in the overall level. This loss in
level is natural, as the maximum amplitude is reduced from 1 to
about 0.76.
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(a) Without non-linearity.
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(b) With non-linearity.

Figure 7: Resulting transfer functions as measured with the setup
of figure 6.

5. TIME-DELAY SPECTROMETRY

In time-delay spectrometry, also a swept sine is used, albeit a
linearly swept one. What makes time-delay spectrometry stand out
is the way the transfer function is computed [7].

Let us for a moment assume we could measure with a complex-
valued measurement signal

x(n) = eπ jn2r (12)

where r denotes the sweep rate. The instantaneous frequency is
given by

ω(n) = 2πnr. (13)

Now when a linear system is excited with a complex sinusoid, its
response is that sinusoid multiplied with H(ω), which in our case
leads to

y(n) = H
(
ω(n)

)
x(n) = H

(
ω(n)

)
eπ jn2r. (14)

By multiplying the received signal y(n) with the complex conjugate
measurement signal x∗(n), the estimated transfer function is directly
obtained as

Ĥ
(
ω(n)

)
= y(n) · x∗(n) = H

(
ω(n)

)
eπ jn2re−π jn2r = H

(
ω(n)

)
.

(15)
Time-windowing the impulse response may then be achieved by
applying a low-pass to the measured transfer function.

eπ jn2r ℜ DAC

conjugate H H(ω)

Ĥ(ω) × + ADC
j

Figure 8: Measurement system using time-delay spectrometry.

Due to the symmetry of H(ω), it is sufficient to limit the sweep
to positive frequencies, that is 0≤ω(n)≤ π or 0≤ n≤ 1

2r = L−1.
By limiting the sweep to positive frequencies and observing that
we hence have an analytic signal, the measurement signal may be
made real by using

x(n) = ℜ(eπ jn2r) = cos(πn2r) (16)

from which the original complex signal may be recovered using a
Hilbert transform. The resulting time-delay spectrometry measure-
ment system is depicted in figure 8.

Unfortunately, equation (14) is only an approximation, assum-
ing a system which causes no significant spreading of the signal
in time-domain. If the measured signal is instead expressed by the
convolution sum (or by considering the Wigner distribution, as in
[8]), we find

y(n) =
N

∑
k=0

h(k)eπ j(n−k)2r = eπ jn2r
N

∑
k=0

h(k)eπ jk2re−2π jnkr (17)

and hence

Ĥ
(
ω(n)

)
= y(n)x∗(n) =

N

∑
k=0

h(k)eπ jk2re−2π jnkr. (18)

After substituting n = ω(n)
2πr this gives

Ĥ
(
ω(n)

)
=

N

∑
k=0

h(k)eπ jk2re− jω(n)k (19)

which obviously is the Fourier transform of ĥ(n) = h(n)eπ jn2r. In
order for this to be a valid approximation of h(n), r� 1

N2 must hold,
which quickly results in very low sweep rates r and thus impracti-
cally long measurement durations. To exemplify the problem, an
experiment was conducted naively employing the measurement sys-
tem of figure 8 to measure a known system with an impulse response
consisting of N +1 ones for different values of N. The sweep length
was chosen as L = 32768 with r = 1

2(L−1) ≈ 1.5259×10−05. As
seen in figure 9(a), the measured impulse response closely resem-
bles the original one for N = 10. For N = 100, the result shown in
figure 9(b) is still a reasonable approximation, while the result for
N = 1000 depicted in figure 9(c) is clearly unusable, as r > 1

N2 .
It should be noted that originally, time delay spectrometry was

proposed for measuring relatively short impulse responses, namely
of loudspeakers; in fact, late parts of the impulse response were sup-
pressed by low-pass filtering the transfer function, corresponding
to windowing the impulse response.

One obvious solution when long impulse responses are to be
measured is to calculate ĥ(n) and multiply by x∗(n) to obtain
h(n) = ĥ(n) · x∗(n). However, as the Ĥ(ω) of equation (17) is
not symmetric anymore, it is not sufficient to measure only for
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ĥ(n)

200−0.5
0

0.5
1

(b) N = 100.

n
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Figure 9: Resulting impulse responses ĥ(n) obtained using time-
delay spectrometry for an original impulse response consisting of
N +1 ones.

0 ≤ ω ≤ π and hence, a real-valued measurement signal may no
longer be used. In practice, this means that the real and imaginary
part of the measurement signal have to be applied to the system
individually and recombined to a complex signal afterwards. The
start and end points need further attention, the easiest solution being
to extend the sweep beyond the original measurement length by
at least the effective length of the impulse response. By employ-
ing these techniques, it is possible to exactly recover the original
impulse responses in the above mentioned experimental setup.

6. CONCLUSIONS

Three widely used impulse response measurement techniques were
critically reviewed for their applicability to real-word problems:
maximum length sequences, exponentially swept sines and time
delay spectrometry.

The measurement using maximum length sequences has very
low computational demands as both generation of the measurement
sequence and the necessary cross-correlation may be performed
with very efficient algorithms. However, the method is quite sen-
sitive to non-linear distortion so great care must be taken to stay
within the linear amplitude range of the analog signal path. In
particular, enough head-room to allow for the over-shoots that may
result from the reconstruction low-pass must be provided.

Measuring with an exponentially swept sine, on the other hand,
handles non-linearities much more gracefully, allowing higher mea-
surement amplitudes, reducing the time needed to achieve a desired
accuracy. Furthermore, the exponential sweep provides better accu-
racy at lower frequencies at the cost of higher frequencies, which

may often be beneficial as it matches human perception. The dis-
advantage of the exponential sweep is that it necessarily has a
non-zero lowest frequency under which no measurement is possi-
ble. The computational demands are significantly higher, especially
for the convolution which has to be computed.

Time delay spectrometry has the curious property that no cor-
relation but only multiplication with the measurement signal is
necessary — and a Hilbert transform if a real-valued measurement
signal is desired. Furthermore, no Fourier transform is necessary if
the transfer function is the goal of the measurement, which was a
real advantage at the time the method was invented. Unfortunately,
only relatively short impulse responses may be measured with the
original method. While a remedy that allows measurement of long
impulse responses is presented in this paper, the involved complica-
tions make the method questionable when compared to the others,
as no real advantages remain.
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