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ABSTRACT 

This is a study on a set of feedback amplitude modulation oscil-
lator equations. It is based on a very simple and inexpensive al-
gorithm which is capable of generating a complex spectrum from 
a sinusoidal input. We examine the original and five variations 
on it, discussing the details of each synthesis method. These in-
clude the addition of extra delay terms, waveshaping of the feed-
back signal, further heterodyning and increasing the loop delay. 
In complement, we provide a software implementation of these 
algorithms as a practical example of their application and as 
demonstration of their potential for synthesis instrument design.  

1. INTRODUCTION 

Audio feedback is one of the most important devices in Musical 
Signal Processing, as it enables the implementation of important 
components such as infinite impulse response (IIR) filters, wave-
guides, reverberators, etc. In sound synthesis, it has been used in 
the useful technique of feedback frequency modulation (FM) 
synthesis [1][2] and correlate [3] methods. In this study, we will 
like to focus on a less well-known approach of feedback ampli-
tude modulation (AM). Feedback AM was first discussed as a 
sound generation method in [5]. 

The synthesis technique of AM consists in adding an audio 
rate periodic source to the amplitude of an oscillator [4]. With 
sinusoidal modulators and carriers, we find components at the 
sum and difference of the carrier and modulator frequencies, plus 
the carrier frequency (by heterodyning). A related technique, 
ring modulation (RM) differs from AM in that the modulator 
signal is applied directly to the amplitude, which is equivalent to 
multiplying the two signals together [4]. Feedback RM is not 
practical (even though it is mentioned in [3], but not directly 
used), as the output signal will disappear as soon as the input is 
zero. 

In [5], we find a short technical description of a feedback 
AM oscillator (fig.1), where the output of a sinusoidal oscillator 
is applied as a modulator to its own amplitude. The algorithm 
employs a fixed feedback interval D (in samples) that is depend-
ent on the signal block size. This structure can be defined by the 
following equation (with the radian frequency ω = 2πfreq/fs and 
amp=1): 
 

)](1)[cos()( Dnynny −+= ω                          (1) 
 

A small adjustment to the above equation, namely, setting D = 1, 
yields the starting point for our exploration of possible musically 

interesting applications for this particularly simple and inexpen-
sive algorithm. In this study, we will look at the characteristics of 
this and five other variations of the technique. 

 
Figure 1. Feedback AM oscillator 

2. THEME 

The feedback AM equation can be demonstrated to be equivalent 
to a coefficient-modulated one-pole IIR filter that is being fed a 
sinusoid. If we recast eq.(1) as 
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equating 
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this fact can be clearly demonstrated. The output spectrum of 
eq.1 (with D = 1) is shown on fig.2.  

Thus, it can be seen that the effect of modulating the filter 
coefficient is that of adding a number of extra harmonic compo-
nents to the sinusoidal input spectrum. We postulate here that 
this is the result of distorting the linear phase increment, which is 
caused by the time-varying phase response of the filter. It is ac-
tually a similar behaviour to that described in [6], [7] and [8] for 
the case of allpass filters. However, here, the filter is not allpass, 
so in addition to the action of the filter’s varying phase response, 
we have some contribution by the magnitude response.  

The time-varying phase and magnitude responses for the fil-
ter in eq.2 can be derived from the transfer function of its linear 
time-invariant version (ie. M(n) = C, constant). With time-
varying M(n), they are now functions of two variables, time in 
samples n, and radian frequency ω:  
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Figure 2. The waveform and spectrum of Feedback AM, 

with freq = 500 Hz. 
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1
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                  (5) 

 
It is difficult to isolate the effects of the phase and magnitude in 
this system, but experiments seem to indicate that the phase dis-
tortion is responsible for the generation of new harmonics and 
the magnitude response helps to give the feedback AM oscillator 
spectrum a lowpass shape.  

The spectrum of the impulse response of the filter in eq.2, 
with M(n) sinusoidal, has a lowpass countour, seen in fig.3 (top). 
However, when we feed white noise to the same filter, its spec-
trum displays a gentle dip towards fs/4 (fig.3, bottom). Eq.5, av-
eraged out over time, will confirm this band-reject shape. Fig.3 
(bottom) also shows the strong peaks at frequencies generated by 
the effect of phase distortion. In general, these features of the 
filter’s spectrum are dependent on the modulation frequency. 

 

 
Figure 3. Spectra of coefficient-modulated filter (eq.2): 

impulse response (top), white noise (bottom), both 
modulated with a 500 Hz sinusoid, fs = 44.1 kHz. 

By introducing a new parameter β, we can vary the amount 
of feedback (fig.4): 
 

)]1(1)[cos()( −+= nynny βω                         (6) 
 
The net effect of varying this parameter is to produce dynamic 
spectra. However, we have to be careful not to render the system 
unstable. The analysis of the equation as a filter structure would 
suggest that β needs to be below one for the pole to remain in-
side the unit circle. However, in practice, due to the combination 
of modulation and sinusoidal input, the system appears to allow 
values up to around 1.7, but this is dependent on the fundamental 
frequency. 
 

 
Figure 4. Flowchart of eq.6 (“theme”) 

Another way of looking at the problem is to expand the feed-
back loop in eq.6 as a sum of signals: 
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This description is perhaps less revealing than the previous one, 
given the complexity involved in evaluating the product terms 
inside the sum. Nevertheless, it tells us two things: that the out-
put is composed of harmonics of ω, and that smaller values of 
β will produce less components. 

Finally, the system will require some means of normalisa-
tion, which can be made dependent on β. An alternative is to ap-
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ply an RMS balancing process [4] using the input sinusoid as a 
comparator signal. 

3. VARIATIONS 

We will now propose a set of variations on the above feedback 
AM oscillator. Each one will provide a means of obtaining dif-
ferent spectra that might be useful in specific applications. 

3.1. Variation I 

The first variation is played by adding an extra delay of the in-
put, as in 
 

)]1(1)[cos(])1[cos()( −−−−= nynnny βωω         (8) 
 

resulting in the waveform and spectrum of fig.5. 

 
Figure 5. Waveform and spectrum of variation I, with 

freq = 500 Hz and β = 1 

 
Interestingly, while the time-domain exhibits some change, 

there is very little spectral variation. This is due to the fact that 
the extra term just adds a zero at DC, adding a gentle high-pass 

contour to it. The results are seen on the higher harmonics, if 
only very lightly on fig.4.  

3.2. Variation II 

The second variation is similar to the coefficient modulated all-
pass filter system described in [6] and [7]. The only difference in 
eq. (9) is the presence of scaling coefficients α and β.  
 

  )]1())[cos(cos(])1[cos()( −−−−= nynnnny βωωωα       (9) 
 

The output of this system is shown in Figure 6. The output spec-
trum is similar to that of Variation I in that it is also lowpass, 
however, the magnitude of the fundamental to the other harmon-
ics is relatively higher, and the spectral roll-off is faster.  

 
Figure 6. Waveform and spectrum of variation II, with 

freq = 500 Hz, α = 1 and β = 1 

3.3. Variation III 

This variation utilises a secondary oscillator to act as a carrier for 
yet another heterodyning operation. The effect, similar to the 
techniques discussed in [9], is to create a resonance region 
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around the carrier (fig.7). The width of this region can then be 
controlled by changing β. 
 

ωθβωθ Nnynnny =−+=   ))],1(1)()[cos(cos()(        (10) 
 

Note that this variation requires the evaluation of the cosine 
function twice per sample, which can be implemented with a 
second oscillator. 

 
Figure 7. Waveform and spectrum of variation III, with 

carrier freq = 4000 Hz, feedback oscillator freq = 200 Hz 
and β = 1 

3.4. Variation IV 

This system in eq.11 is similar to the one proposed in [3], where 
the feedback signal is non-linearly amplified by the cosine map-
ping. The net result is that of a partial feedback FM spectrum 
with missing even harmonics, given that the equation implements 
only one term of a heterodyne-based FM equation (for details see 
[8] and [10]).  

)]1(cos(1)[cos()( −+= nynny βω                  (11) 
 
Figure 8 shows the spectrum of the output with the even harmon-
ics missing. The waveform shape is bipolar and smooth, as the 
high frequency energy in this example is below 5000 Hz. 

This variation is significant in that it brings the concept of 
waveshaping into play. In fact, we could generalise it by substi-
tuting cos(.) by an arbitrary function f(.). Experiments have indi-
cated that using abs(.) as the waveshaper produces triangle-like 
waveforms. In addition, this variation is reminiscent of some re-
cent work on non-linear oscillators utilising sine [11] and circle 
[12] maps.  

 
Figure 8. Waveform and spectrum of variation IV, with 

freq = 500 Hz and β = 1 

3.5. Variation V 

This variation goes back to the original formulation in [5] and 
introduces a means of changing the delay D in samples.   
 

)](1)[cos()( Dnynny −+= βω                   (12) 
  

If we look at this expression as a filter, then we might con-
sider this as a comb filter tuned to fs/D samples. The particular 
case where D= fs/freq is worth noting. Here we will have a very 
sharp pulse wave at the output (fig.9). This case is where the 
phases of the cosine products on eq.7 should be aligned, so theo-
retically, for β = 1, we will have 
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Figure 9 Waveform and spectrum of variation V, with 

freq = 441 Hz, fs = 44100 Hz, D = 100 and β = 1 

Despite the complicated nature of eq.13, this hints at a 
slowly-decaying spectrum containing all harmonics of the fun-
damental frequency. Partially evaluating eq.13, with k ≤ 4, we 
have: 
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Since this expression generates a non-bandlimited spectrum, 

some aliasing will inevitably occur. In the case of integral de-
lays, this is not noticeable, as the aliased components will fall 
over the harmonics in the baseband.  

In the case of non-integral delays, if interpolation is used, it 
will have some filtering effect in the predicted spectrum of eq.13. 
Varying the delays will have the effect of changing the timbre of 
the sound, as harmonic weights change. The flowchart for this 
variation is shown in fig.10. 

 

 
Figure 10. Variation V flowchart 

3.6. Coda 

In addition to the above, it is also possible to realise the equa-
tions above successfully as audio effects with arbitrary complex 
inputs. In this case, the best results were obtained by inserting a 
simple LP filter (1st order IIR) in the feedback loop. This will 
attenuate high frequencies and allow for an increase in β above 
the usual limit (ca. 1.7) increasing distortion but avoiding insta-
bilities in the system. With this simple measure it is possible re-
alise the effects above. The implementation of variation III, 
however, will require pitch tracking as there is an auxiliary oscil-
lator involved. 

4. THE PIECE 

This section describes an implementation of the feedback AM 
oscillator and its variations I-V, and demonstrates three example 
applications utilizing the synthesis method. 

4.1. Verse 

There are four types of signals in the basic feedback AM equa-
tion (eq. 6) and its variations (eqs. 8-12). The source signal 
cos(ωn) and the frequency shifter signal cos(θn) can be realized 
as sinusoidal oscillators, the feedback signal y(n-D) as a delay 
line, and the delayed source signal cos(ω[n-1]) as a state vari-
able. The parameters of these building blocks are shown in Table 
1. 

Table 1: Synthesis parameters. 

parameter description 
fx source frequency 
ax source amplitude 
β feedback amount 
D feedback delay amount 
N frequency shift amount 
v variation number 

 

The parametrized building blocks were implemented in soft-
ware as C language objects, while equations 6 and 8-12 were 
implemented as block-based C functions operating on these ob-
jects. The DSP processing logic invokes one of these functions at 
runtime, based on the value of the variation number parameter v. 
The source code was compiled then into an external library 
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(fbam~), implementing the feedback AM oscillator in the Pure 
Data (PD) environment [13]. Finally, two envelope generators 
(EGs) were inserted in front of the oscillator in order to control 
the amplitude ax and the feedback amount β of the oscillator (see 
Fig. 11). For convenience, the resulting patch was encapsulated 
into a PD abstraction so that it could be handled as a single unit 
generator. This composite unit is the equivalent of an FM opera-
tor used in the commercial FM implementations, and therefore, 
we call the unit the feedback AM operator. 

A single feedback AM operator instance can be used as a 
simple and inexpensive virtual analog (VA) synthesizer imple-
mentation. The basic feedback AM equation produces a 
sawtooth-like spectrum, while variation IV can be used in pseudo 
square and triangle wave generation. Thus, the variation number 
v can be used as a waveform selector. The amount of feedback β 
can be used to simulate the cutoff frequency parameter of a sub-
tractive synthesis lowpass filter. This simple VA synthesizer 
model can be extended by patching additional control rate signal 
generators, such as low frequency oscillators (LFOs), into the fx, 
ax and β inputs of the operator. 

 
Figure 11. Feedback AM operator. 

4.2. Bridge 

Although LFOs and EGs provide simple means for sound anima-
tion in time domain, modulation of the delay time parameter D 
results in more intense dynamic spectra. This is due to the fact 
that the equivalent filter structure changes with the amount of 
delay in the feedback path. Another way of looking at this is to 
think that the delayed signals will have different phases and this 
will contribute to the appearance and disappearance of harmon-
ics. We call this effect phase difference modulation. 

4.3. Chorus 

The generated timbral space can be further expanded by inter-
connecting the feedback AM operators into parallel or serial con-
figurations. Continuing with the FM parlance, these interconnec-
tion topologies are the equivalents of FM algorithms. However, 
instead of modulating the frequency (or phase) of the attached 
operator, cascaded feedback AM operators modulate the ampli-
tude input ax of the attached unit. 

Fig. 12 shows a spectrogram of an electric piano timbre that 
was synthesized using four feedback AM operators. Two opera-
tors were cascaded in series as to produce the higher frequency 
attack portion of the sound (variation III, fx = 440 Hz, N = 8 and 
β = 0.24 in the modulating operator, N = 21 and β = 0.5 in the 
modulated operator). The output of the cascade was mixed with a 

slightly detuned pair of operators arranged in parallel configura-
tion, producing the lower frequency sustaining portion of the 
sound (variation II, β = 0.42, fx1 = 440 Hz, fx2 = 441 Hz). Ampli-
tude inputs were modulated with linearly decaying envelopes, 
but the feedback amount β was kept constant. 

 
Figure 12. Spectrogram of an electric piano patch. 

5. CONCLUSION 

We have presented here a brief study of a series of simple and 
low-cost synthesis methods based on feedback structures, which 
prove to be useful for a variety of applications. In this work, we 
have examined five variations of a feedback AM equation, each 
one providing a different signal output. A reference software 
implementation in PD was presented. The encapsulation of these 
methods in an ‘operator’ abstraction has been shown to be a 
useful way of providing them for general-purpose synthesis 
applications. 
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