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ABSTRACT
This paper describes the use of Non-negative Tensor Factorisation
models for the separation of drums from polyphonic audio. Im-
proved separation of the drums is achieved through the incorpo-
ration of Gamma Chain priors into the Non-negative Tensor Fac-
torisation framework. In contrast to many previous approaches,
the method used in this paper requires little or no pre-training or
use of drum templates. The utility of the technique is shown on
real-world audio examples.

1. INTRODUCTION

The separation of drum instruments from polyphonic music sig-
nals has numerous applications including remixing, DJing tools,and
rhythm-driven effects. Other possible uses include automatic tran-
scription of drum parts, beat tracking, rhythmic description, and
style identification.

In the past few years, numerous approaches to this problem
have been proposed. Some approaches are based on the idea of
separating the harmonic portion of the signal from the non-harmonic
portion of the signal, via techniques such as sinusoidal modelling
[1] or via noise subspace projection techniques [2]. The utility of
these approaches is that they require no pretraining on the audio
signals, but they suffer from limitations in that some parts of the
drum sounds can be modelled by sinusoidal coefficients and that
the attacks of some instruments will also be captured as part of the
noise signal.

A spectral modulation approach was used by Barry et al [3]
whereby a transient detector was used to modulate an audio spec-
trogram to separate out the percussive parts of the spectrogram.
While capable of giving good rejection of the pitched instruments,
the timbre of the recovered drums was noticeably different from
those of the original drums. However, it should be noted that this
method did not require any pre-training.

Other approaches include that of Helen [4], which used non-
negative matrix factorisation to decompose the input spectrogram
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into various components. The resultant components were then
classified as either pitched or percussive based on a pre-trained
support vector machine, and these components used to resynthe-
sise the separated drum track. However, in some cases the com-
ponents separated contained elements of the pitched sounds. An-
other matrix factorisation based approach was developed by Gillet
et al [5], where they used a separate sets of templates to model
the background music and the drum parts of the signals. The drum
templates were augumented with templates derived from the signal
obtained using the subspace projection drum separation method
described in [2] which helped improve the quality of the separa-
tions.

Another commonly used approach is that of template adapta-
tion. Zils et al used simple time-domain templates for snare and
kick drum which were then adapted iteratively using an anlysis
by synthesis approach to extract a drum track containing these
two drums [6]. However this approach suffered from a limitation
in that it could not deal with simultaneous occurrences of these
drums.

A more advanced template adaptation scheme was used by
Yoshii et al in the context of both drum transcription [7] and drum
sound remixing [8]. In these papers initial seed templates consist-
ing of spectrograms of the various drums to be separated are iter-
atively adapted to provide a better match to the drums in the input
signal. Harmonic component suppression is also used to further
improve the results obtained. Finally, Itoyama et al. extended the
idea of template adaptation to deal with both pitched and unpitched
instruments, though this technique did require initialisation of the
model parameters using a midi file of the piece to be separated [9]

In this paper, the method we propose for the separation of
drum tracks from polyphonic audio is a version of the tensor fac-
torisation models developed by the authors in [10] and [11] modi-
fied with the addition of gamma chain priors in a manner similar to
that proposed by Virtanen et al in [12]. The model attempts to sep-
arate the harmonic parts of the signal from the non-harmonic parts
of the signal, though unlike previous models which attempt this
directly, it does so in the context of matrix and tensor factorisation
techniques which have been shown to have good performance for
the purposes of sound source separation. However, unlike previ-
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ous factorisation based methods, this technique does not require
the use of pre-training, though prior information about the sources
can easily be incorporated if required.

The remainder of the paper is organised as follows:, subsec-
tion 1.1 describes the notation conventions to be used throughout
the paper, section 2 describes the separation model developed in
this paper, section 3 presents separations obtained using the algo-
rithm and section 4 provides some conclusions and directions for
future work.

1.1. Notation

For the remainder of this paper, all tensors, regardless of the num-
ber of dimensions, are signified by the use of caligraphic letters
such as A. 〈AB〉{a,b} denotes contracted tensor multiplication
of A and B along the dimensions a and b of A and B respec-
tively. Outer product multiplication is denoted by ◦. Indexing of
elements within a tensor is notated by A(i, j) as opposed to us-
ing subscripts. This notation follows the conventions used in the
Tensor Toolbox for Matlab, which was used to implement the fol-
lowing algorithm [13]. For ease of notation, as all tensors are now
instrument or source specific, the subscripts are implicit in all ten-
sors within summations. Elementwise multiplication is denoted by
⊗ and all division is taken as elementwise. Further, when dealing
with 1-D tensors (which correspond to vectors in standard nota-
tion), the singleton dimension is omitted.

2. TENSOR FACTORISATION MODEL

The model used in this paper is a simplified version of that pro-
posed in [11], where shift-invariance in time has been eliminated
for the model. Shift-invariance in time was removed for the pur-
poses of separating pitched and unpitched sources as it was found
that it allowed the unpitched section of the signal to capture aspects
of the pitched part, which otherwise would belong in the pitched
part of the model.

Given an r-channel mixture, magnitude spectrograms are ob-
tained for each channel, resulting in X , an r×n×m tensor where
n is the number of frequency bins and m is the number of time
frames. The tensor is then modelled as:

X ≈ X̂ =

KX

k=1

G ◦ 〈〈〈FH〉{2,1}W〉{3,1}S〉{2,1}

+

LX

l=1

M◦B ◦ C (1)

where X̂ is an approximation to X . The first right-hand side term
models pitched sources, and the second unpitched or percussion
sources. K denotes the number of pitched sources and L denotes
the number of unpitched sources.

G is a tensor of size r, containing the gains of a given pitched
source in each channel. F is of size n× n, where the diagonal el-
ements contain a filter which attempts to model the formant struc-
ture of an instrument, thus allowing the timbre of the instrument
to alter with frequency. H is a tensor of size n × zk × hk where
zk and hk are respectively the number of allowable notes and the
number of harmonics used to model the kth instrument, and where
H (:, i, j) contains the frequency spectrum of a sinusoid with fre-
quency equal to the jth harmonic of the ith note. W is a tensor of
size hk containing the harmonic weights for the kth source. S is

a tensor of size zk × m which contains the activations of the zk

notes associated with the kth source, and in effect contains a tran-
scription of the notes played by the source. For the separation of
signals containing pitched instruments only, best results were ob-
tained when the lowest note played by each instrument was used
as the lowest note in the source harmonic dictionary H.

For unpitched instruments, M is a tensor of size r containing
the gains of an unpitched source in each channel. B is of size n
and contains a frequency basis function which models the timbre
of the unpitched instrument. C is a tensor of size m which contains
the activations of the lth unpitched instrument.

It can be seen that to obtain an estimate of the pitched sources
only the first right hand side term of eqn 1 needs to be recontructed,
and for the unpitched sources, only the second right hand side term
needs to be used. The model can also be collapsed to the single
channel case by eliminating both G and M from the model.

The generalised Kullback-Leibler divergence is used as a cost
function to measure reconstruction of the original data as it has
been shown to be effective for audio sound source separation [10]:

D
“
X ‖ X̂

”
=
X

X log
X
X̂ − X + X̂ (2)

where summation takes place over all dimensions of X̂ . Using this
measure, iterative multiplicative update equations can be derived
for each of the model variables in a manner similar to that de-
scribed in [10]. Non-negativity is achieved through initialising the
variables to non-negative values and the use of multiplicative up-
dates. From these, separation of pitched and unpitched instruments
can be attempted. However, considerably improved results can be
obtained by the incorporation of gamma priors into the model in
a manner similar to that proposed by Virtanen et al in the context
of a standard non-negative matrix factorisation (NMF) approach
[12], where the factorisation was of the form

X = AS (3)

as opposed to the tensor factorisation model used in this paper. The
incorporation of gamma priors into this tensor factorisation model
is discussed in the following subsection.

2.1. Gamma Priors

Virtanen et al introduce two types of gamma priors, the first en-
courages temporal continuity to recover source activations which
vary slowly in time, while the second allows the incorporation of
prior knowledge about the frequency characteristics of sources in
a simple and intuitive manner. In the context of separating pitched
and unpitched instruments, incorporating temporal continuity in
the pitched part of the model should favour the recovery of pitched
sources as these will be more slowly varying in time than the
unpitched sources which are typically more transient in nature,
while incorporating prior knowledge of the characteristics of the
unpitched sources could potentially aid recovery of these sources.

To this end, the authors experimented with a basic NMF model
where the basis functions were split into two groups, the first in-
corporating temporal continuity, while the second had no temporal
continuity constraint imposed. However, it was found that this
alone was not sufficient to separate percussion instruments from
pitched sources and that harmonicity was also required as a con-
straint, hence the use of the harmonically constrained tensor fac-
torisation model in this paper.
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Temporal continuity is encouraged through the use of a gamma-
chain. Adapting the notation used by Virtanen et al, the gamma
distribution is defined for y > 0 as:

G(y; a, b) = ya−1b−ae−y/b/Γ(a) (4)

where Γ(a) is the gamma (generalised factorial) function The gamma
chain is then constructed through the use of an auxilary tensor Z
of size zk ×m + 1, defined as:

Z(i, 1) ∼ G(Z(i, 1); a + 1, (ab)−1)

S(i, τ) | Z(i, τ) ∼ G(S(i, τ); a, (Z(i, τ)a)−1) (5)

Z(i, τ) | S(i, τ) ∼ G(Z(i, τ + 1); a + 1, (S(i, τ)a)−1)

where τ indicates the time index in frames and lies between 1 and
m, and i indexes over 1 : zk. Here a acts as a coupling parame-
ter between frames, with larger values resulting in more strongly
coupled adjacent frames.

Again, using the method proposed by Virtanen et al, priors
over the unpitched frequency basis functions B are derived assum-
ing each entry of each prior is independently drawn from a Gamma
distribution:

p(B(v)) = G(B(v); αv, β−1
v ) = B(v)αv−1βαv

v e−B(v)βv /Γ(αv)
(6)

where v denotes the vth frequency bin. The hyperparameters αv

and βv can be chosen independently for each source, and a simple
interpretation of β−1

v is as a set of weights which describe the typ-
ical frequency content of a given source. Therefore, in this context
β−1

v could be a typical frequency spectrum of an unpitched in-
strument such as a snare drum. For example, the priors used for
drum transcription using Prior Subspace Analysis (PSA) [14] can
be used as β−1

v . However, unlike PSA, the frequency basis func-
tions are still free to adapt during analysis.

2.2. Update Equations

Incorporating the above gamma priors into a cost function with the
generalised Kullback Liebler divergence results in a extended cost
function given by:

D
“
X ‖ X̂

”
+ log(p(Z,S)) + log(p(B)) (7)

From this iterative multiplicative update equations can be derived
in a manner similar to those obtained in [12]. DefiningD = X/X̂
and O as an all ones tensor the same size as X , the update equa-
tions are given below for all the parameters in the model:

G = G ⊗ 〈D〈〈〈FH〉{2,1}W〉{3,1}S〉{2,1}〉{2:3,1:2}
〈O〈〈〈FH〉{2,1}W〉{3,1}S〉{2,1}〉{2:3,1:2}

(8)

F = F ⊗ 〈〈GD〉{1,1}〈〈T W〉{3,1}S〉{2,1}〉{2,2}
〈〈GO〉{1,1}〈〈T W〉{3,1}S〉{2,1}〉{2,2}

(9)

W = W ⊗ 〈〈(G ◦ 〈FH〉{2,1})D〉{1:2,1:2}S〉{[1,3],1:2}
〈〈(G ◦ 〈FH〉{2,1})O〉{1:2,1:2}S〉{[1,3],1:2}

(10)

S = S⊗
(2a/S) + 〈(G ◦ 〈〈FH〉{2,1}W〉{3,1})D〉{1:2,1:2}
(aQ) + 〈(G ◦ 〈〈FH〉{2,1}W〉{3,1})O〉{1:2,1:2}

(11)

where
Q = Z(i, 1 : m) + Z(i, 2 : m + 1) (12)

and

Z(i, τ) =

8
><
>:

1/(S(i, 1) + b), τ = 1

2/(S(i, τ) + S(i, τ − 1), 1 < τ < m + 1

1/S(i, τ) τ = m + 1

(13)

In line with Virtanen et al b is set to zero in the above equation, as
this results in the gain prior becoming independent of the overall
level of the gains, while a was set to 100 as this appeared to give
good results as suggested in [12].

M = M⊗ 〈D(B ◦ C)〉{2:3,1:2}
〈O(B ◦ C)〉{2:3,1:2}

(14)

B = B ⊗ (αv − 1)/B + 〈〈MD〉{1,1}C〉{2,1}
βv + 〈〈MO〉{1,1}C〉{2,1}

(15)

Again, following Virtanen et al, αv is set to one and so the update
equation for B only utilises the prior frequency characteristics pro-
vided.

C = C ⊗ 〈(M◦B)D〉{1:2,1:2}
〈(M◦B)O〉{1:2,1:2}

(16)

3. EXPERIMENTS

In the context of separating pitched instruments from unpitched in-
struments, the separation of individual pitched instruments is not
a priority, and so the harmonic dictionaries for the sources do not
have to be set as accurately as for the separation of individual in-
struments. To this end, the main focus is on covering a large num-
ber of pitches and so the number of pitched sources was set to
3, and each source covered a pitch range of 2 octaves or zk=24,
starting from 55 Hz for the lowest source. No overlap in allow-
able notes or pitch occurred between sources and so in total a 6
octave range was covered. The number of harmonics per note of
each source was set to hk = 15. The experiments were performed
on mono excerpts taken from various commercial pop and rock
recordings and so the original sources were not available for quan-
titative analysis.

In many cases the number of pitched instruments, which of-
ten included singing voice, was greater than 3, but the algorithm
showed sufficient flexibility to represent the overall set of pitched
instruments using just a combination of 3 sources. In most cases,
the bass line predominates in the lowest pitched source, and a small
adjustment in zk for this source is often sufficient to recover the
bass line independently of other sources.

Similarly, the number of unpitched sources was set to 3. For
experiments utilising priors β−1

v was set to the priors used in [14].
In the majority of cases tested, the results obtained when using no
priors were equivalent to those obtained using priors with regards
to the overall recovery of the unpitched sources. Further inves-
tigation of the cases where using priors improved results showed
that it was typically the kick drum that was recovered better when
using priors, and that equivalent results could be obtained by just
using a prior of a kick drum only, with no priors on the other drum
sources. This highlights the utility of the model proposed in this
paper over previous factorisation and template based approaches
in that little or no training is required to separate the sources.

Rather than directly resynthesising the sources using the es-
timates obtained from the model in conjunction with the original
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mixture phase information, more natural sounding results were ob-
tained by using a type of Wiener filtering, where the model es-
timates were used to filter the original complex spectrogram as
shown in the equations below:

Ŷp = Y ⊗ X̂p

X̂ (17)

where Y is a tensor containing the original complex spectrograms,
Ŷp contains the estimated overall pitched source spectrograms,
and X̂p contains the overall pitched source spectrograms estimated
from the model.

Similarly, the unpitched or drum sources are obtained from:

Ŷd = Y ⊗ X̂d

X̂ (18)

where Ŷd contains the estimated overall pitched source spectro-
grams, and X̂d contains the overall pitched source spectrograms
estimated from the model.
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Figure 1: (a) Original excerpt from “Rosanna” by Toto, (b) Sepa-
rated pitched instruments, (c) Separated drums

Figure 1 shows an excerpt from “Rosanna” by Toto, together
with the separated pitched instruments and the separated unpitched
instruments. It can be seen from the separated waveforms that the
prominent transients associated with the drums are absent from the
pitched sounds, and that there is little evidence of pitched sounds in
the separated drum track. On listening, the presence of the drums
has been very much reduced in the separated pitched instruments,
while the only evidence of the pitched instruments in the separated
drums is the presence of the attack of the piano, while the timbre
of the drums is a reasonable approximation to the original.

Figure 2 shows an excerpt from “Like a Virgin” by Madonna,
as well as the separated pitched instruments and the separated drums.
Again, the prominent transients have been removed from the pitched
instruments and no evidence of pitched instruments can be heard
in the separated drum track, and the drum timbres have been pre-
served reasonably well.
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Figure 2: (a) Original excerpt from “Like a Virgin” by Madonna,
(b) Separated pitched instruments, (c) Separated drums

Informal listening tests suggest that the incorporation of tem-
poral continuity gives considerably improved results over those
obtained without temporal continuity and that the method gives
improved results over those obtained using the techniques described
in [3, 4, 5]. Subjective listening tests will be completed in the very
near future. However, in common with other techniques that at-
tempt to separate harmonic from non-harmonic components, traces
of the attacks of certain instruments such as pianos can be heard
in the recovered unpitched spectrogram. Nonetheless the timbre
of the recovered drum sounds is considerably closer to the original
timbres in many cases over previous methods.

4. CONCLUSIONS

A tensor factorisation based technique for separating unpitched in-
struments from polyphonic music has been proposed. The tech-
nique imposes harmoncity constraints on the pitched instruments
and extends previous tensor factorisation based techniques through
the incorporation of temporal continuity constraints on the pitched
instruments in the form of gamma chain priors.

An advantage of this technique over previous factorisation based
and template based techniques is that the method requires little
or no pretraining, with only a kick drum prior required in some
cases, while in most cases good separation is obtained with no
prior knowledge of the signals. However, it still suffers from some
of the problems associated with methods that separate harmonic
from non-harmonic portions of the signal, in that percussive at-
tacks of pitched instruments also get separated in the non-harmonic
portions of the signal.

Informal listening tests suggest that the proposed method gives
better resynthesis quality and separation than previous approaches,
and subjective listening tests will be completed in the very near
future. Future work will also concentrate on trying to remove the
problem of percussive attacks of pitched instruments.
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