
Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

SMSPD, LIBSMS AND A REAL-TIME SMS INSTRUMENT

Richard Thomas Eakin

Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
rich.eakin@gmail.com

Xavier Serra

Music Technology Group
Universitat Pompeu Fabra

Barcelona, Spain
xavier.serra@upf.edu

ABSTRACT

We present a real-time implementation of SMS synthesis in Pure
Data. This instrument focuses on interaction with the ability to
continuously synthesize any frame position within an SMS sound
representation, in any order, thereby freeing time from other pa-
rameters such as frequency or spectral shape. The instrument can
be controlled expressively with a Wacom Tablet that offers both
coupled and absolute controls with good precision. A prototype
graphical interface in python is presented that helps to interact with
the SMS data through visualization. In this system, any sound
sample with interesting spectral features turns into a playable in-
strument. The processing functionality originates in the SMS C
code written almost 20 years ago, now re-factored into the open
source library, libsms, also wrapped into a python module. A set of
externals for Pure Data, called smspd, was made using this library
to facilitate on-the-fly analysis, flexible modifications, and inter-
active synthesis. We discuss new transformations are introduced
based on the possibilities of this system and ideas for higher-level,
feature based transformations that benefit from the interactivity of
this system.

1. INTRODUCTION

A musical instrument needs to be capable of expression. It should
not only have an interesting and dynamic sound, but it also needs
to be playable. The well-known techniques of Spectral Model-
ing Synthesis (SMS) can easily create rich and interesting sounds,
but playability can only be achieved through compromises in or-
der to intuitively control this dense parametric model in real-time.
Many approaches choose to re-synthesize the data similar to its
acoustic source; for example, a saxophone melody analyzed, seg-
mented and reconstructed with a new order of pitches. On the other
hand, focusing on one note in this melody, if parametrized accord-
ingly, presents an abundance of compositional material throughout
its many evolving harmonics and energy bands. By limiting the
length of the sound source to a few well defined events, one can
explore the spectral richness of an analyzed acoustic event through
a system based on real-time SMS synthesis, thereby turning these
events into playable instruments. Our instrument not only lends
itself to musical interest, but also gives the performer an improved
understanding of the underlying structure in sounds we may some-
times take for granted.

This paper discusses the ongoing development of a spectral
modeling synthesizer in the Pure Data [13] real-time audio envi-
ronment. It stems from the original SMS system developed in [15],
now in the form of the open source C library libsms1. The library

1libsms homepage: http://mtg.upf.edu/static/libsms

is undergoing constant re-factoring and additional tools from new
research in spectral modeling techniques, but at its core contains
very powerful synthesis routines that provide for a powerful real-
time instrument within a lightweight code base.

Using this library, externals for analysis, synthesis, and edit-
ing were created in Pure Data (Pd) called smspd. Once this system
was established, we were presented with many new and innovative
ways to use these tools within such a powerful and flexible pro-
gramming environment. To begin however, it seemed most appro-
priate to design a playable instrument, hoping to be as expressive
as the acoustic instruments used to create our SMS data. To this
aim, the following design choices were established along the way:

• analysis is treated as a separate non-real-time procedure.

• the overall sound length is kept short enough to allow one
to focus on distinct regions of data with interesting features.

• the choice of synthesis frame (time index) is unrestricted:
any order of frames produces a smooth synthesis, chosen in
real-time.

While these decisions may seem quite limiting in the face of many
advancements to SMS techniques, this paper aims to show how
they lead to an instrument that allows for an interactive exploration
of the acoustic phenomena organized within the spectral data in a
very musical way.

The rest of this paper is organized as follows. Section 2 pro-
vides an overview of the analysis / synthesis methods used and
discusses related software. Section 3 introduces libsms and tools
for real-time synthesis and visualization that use the library. Sec-
tion 4 describes the implementation of an interactive SMS-based
instrument in Pd. Finally, Section 5 discusses the benefits of our
approach and provides room for future work in both interface de-
sign and modifications.

2. BACKGROUND AND RELATED WORK

2.1. Sinusoids Plus Noise Model

There are many approaches to modeling spectral data that all try
to describe a signal in the frequency domain with more useful pa-
rameters than what is first obtained with short-time Fourier analy-
sis [1]. Within the scope of this paper, the Sinusoids (or Determin-
istic) Plus Noise (or Stochastic) [17] model is used for analysis,
transformation and synthesis. This model is useful because it ef-
fectively parametrizes a large variety of sounds in a manner that
offers a number of meaningful manipulations [18] and is well fit
for real-time synthesis. The detailed processing techniques are de-
scribed in [4], while here is only a brief introduction.

DAFX-1

http://mtg.upf.edu
mailto:rich.eakin@gmail.com
http://mtg.upf.edu
mailto:xavier.serra@upf.edu
http://mtg.upf.edu/static/libsms

Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

In sinusoidal analysis, a sequence of FFT frames are computed
using the STFT. Peaks in the resulting magnitude spectrum are
then detected and tracked from frame to frame. The result is a set
of sinusoidal ‘tracks’ with time varying frequencies, magnitudes
and phases [12, 20]. With only sinusoidal tracks, it is possible
to generate a reconstruction that captures the acoustic qualities of
many musical instruments.

If the sound is known to be harmonic, a property common to
many musical instruments, the first track can be seen as the funda-
mental frequency of the sound source. This information can then
be used to improve the peak-picking process by looking for par-
tials that are multiples of the fundamental.

There are two basic methods for reconstructing a time-domain
signal from sinusoidal tracks. The traditional method is with an os-
cillator bank, where-in an array of frequency/magnitude/phase are
made into time-varying sinusoids by a table-lookup. The resulting
waveforms are successively summed into a complex waveform. A
more efficient method is to sum the partials while still in the fre-
quency domain and use the inverse-FFT algorithm to convert all
partials to a complex waveform at once [8]. Both techniques in-
terpolate the frequencies and amplitudes between frames to create
smoothly evolving sinusoids.

A stochastic residual helps to ‘fill in’ the representation of
many sounds that contain noisy characteristics, such as the breath
in voice or the string slipping in bowed instruments [15]. The
residual is obtained by re-synthesizing the sinusoidal tracks and
subtracting the resulting waveform from the original. If the resid-
ual is considered as purely stochastic, which is the case in a perfect
deterministic analysis, it is only necessary to store the magnitude
spectrum of the residual.

The inverse-FFT algorithm is used to reconstruct a time-domain
waveform of the stochastic residual from the analyzed magnitude
spectrum and randomly generated phases. To reconstruct the orig-
inal signal, the two time-domain waveforms are summed together.

In both sinusoidal and noise components, the data is computed
and stored at a frame-rate fast enough so that linear interpolation
from frame to frame creates the illusion of a smooth acoustic evo-
lution in the synthesis. Transients, such as onsets, are not accu-
rately represented in a sinusoids plus noise decomposition2 be-
cause they evolve too fast to be accurately reproduced at a frame-
rate low enough to be useful when modeled as sinusoids, yet their
phase values are not stochastic. Some systems extract the tran-
sients before sinusoidal and stochastic residual analysis and treat
them independently [21], while others re-sample the frame-rate in
sections where transients are detected [7].

2.2. Real-Time Flexibility with Magnitude Only Analysis / Syn-
thesis

Some types of sounds, especially those with smooth evolution, do
not benefit from using original phase values in re-synthesis [15]. If
original phases are disregarded in the extracted sinusoidal tracks,
new phases can be calculated from any given frequency/amplitude
pair. The first frame synthesized starts with randomly generated
phases, then at the end of each frame the phase values of each par-
tial track are stored so that the next frame’s phases can smoothly
continue. It is a similar case with the residual data; phases are
disregarded and regenerated randomly when needed.

2While the result of modeling transients as sinusoids might go strangely
haywire, there have been many instances when using a malformed model
produced very interesting musical sounds

Modifications in time are trivial if phases are generated on the
fly at the time of synthesis. A constant interpolation time from
frame to frame is first provided (in the IFFT re-synthesis method,
this is the hop size) and then any frame can occur before the next
with a smooth result. Furthermore, all or individual frequency and
magnitude values can be modified without creating clicks or pops
from phase discontinuities.

2.3. Modifications of the Analysis Data

The Sinusoids Plus Noise model is chosen for our work because
it permits many types of modifications, making it possible to cre-
ate new sounds that contain a rich timbre derived from an acoustic
source. The most common manipulations are frequency and time
scaling the entire data set by a constant [12, 17]. These modifica-
tions make the model popular because they do can be performed
independent of one another, without distorting the timbrel charac-
teristics of the sound.

The magnitudes of individual or groups of sinusoidal tracks
can also be modified, which produces similar effects to time-domain
filtering. Modifying individual frequencies creates a distortion to
the overall acoustic structure of the sound, an interesting effect
unattainable within the original sound’s capabilities.

The noise component can be modified independently of the
sinusoidal component, yielding a number of effects. The easiest
modification is to emphasis or deemphasis the noisiness by mod-
ifying its overall gain. Also, the brightness of the sound can be
modified by increasing the gain of the residual in the higher fre-
quency range.

Higher level modifications can be accomplished by extracting
features from the SMS data [18]. The spectral shape, or envelope,
of both sinusoidal and noise components can be calculated and
modified with very interesting results. In sounds that contain a dis-
tinct spectral shape independent of pitch (fundamental frequency),
re-applying the spectral shape of the original data after transposi-
tion can help to preserve timbre characteristics [15]. Two spectral
envelopes, from different sources, can be used to create the effect
of a time-varying ‘hybrid’ from one sound to another [16].

Some sound features can be described with one value per anal-
ysis. For example, a harmonic distortion can be applied by mul-
tiplying the frequency of every partial by a non-integer. Another
possibility is to approximate the spectral tilt with a line and use
the slope coefficient as a controller, thereby changing frequency
magnitudes depending on their location in the spectrum.

Feature-based modifications are useful for manipulating SMS
data in real-time without necessarily needing a ‘perfect’ analysis.
They produce interesting sound effects, but the results may be un-
predictable. There are other systems that use feature extraction
and classification techniques to preform more musically meaning-
ful transformations based on machine learning [3], but usage of
these techniques is beyond the scope of this paper.

2.4. Software Approaches to Synthesizing SMS Data

There are many different approaches for processing SMS data,
which vary depending on the application at hand. Here is a short
review of various SMS software systems whose histories contribute
to the system presented in this work.

SMS was originally used in terminal-based applications that
were controlled and tested with bash scripts. In the original SMS C
package, MusicKit [9] was used to create modifications over time

DAFX-2

Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

with envelopes.3 A score file was read that directed functions for
time stretching, amplitude, frequency and hybrid modifications.

Eduard Resina later created the Windows application SMS-
Composer [14], introducing a graphical user interface and sequencer
for the available modifications. Many useful elements were in-
corporated, such as a clef for the pitch range and an envelope vi-
sualizer, that made composing with an SMS model more natural
than what a script file can offer. More recently, the CLAM frame-
work [2], containing SMSTools, has been developed to allow for a
collection of effects combined with SMS synthesis. Analysis and
Transformations of the SMS model are organized in XML scripts.

Many applications have been designed to take advantage of so-
phisticated audio processing techniques alongside SMS in order to
achieve certain application’s necessities. One example is presented
in [11], where a system for singing karaoke impersonation is im-
plemented by using parameters of an input voice to control the
spectral models created from a professional singer. The singers’
voice is analyzed for pitch, spectral envelope, and formant struc-
ture. This information is used to align the real-time signal with
the stored analysis files, with the additional help of a score with
melodic and lyrical information.

Micheal Klingbeil’s Spear is a convenient standalone appli-
cation for different types of analysis, re-synthesis, and editing of
sinusoidal tracks [10]. The model he works from is not based on
SMS, but is mentioned here anyway because this application has a
very nice interface for interacting with extracted sinusoidal tracks.
It is a straightforward and lightweight tool that displays sinusoids
on a time/frequency axis, resembling a sonogram. Various edit-
ing tools are available such as frequency and time region selectors,
the most interesting of which is the ‘lasso’ tool for hand picking
a region of sinusoidal tracks. Spear is a powerful application for
sound analysis, although difficult to use for musical purposes - all
modifications must be exported to file. However, Spear can export
sinusoidal tracks to SDIF files [22], thereafter usable in a variety
of other applications. For example, the first author wrote exter-
nals in Pd for importing SDIF 1TRC frames created in Spear, and
then synthesizing with an oscillator bank4. There are also objects
within the Max/MSP environment for additive synthesis based on
analysis data stored in SDIF files [22, 23].

3. THE (RE)BIRTH OF LIBSMS AND [SMSPD]

This section provides a brief introduction to libsms, an open-source
C library for spectral analysis, synthesis and modifications.

Many years ago, a lightweight, C-based library was developed
for spectral modeling analysis and synthesis based on the sinusoids
plus stochastic model [15]. Last touched around 1990, the code
contained many functions that did not work on modern day com-
puters. For example audio input/output depended on the NeXT
sound file format and the script-based sequencer was based on the
NeXT MusicKit [9]. The audio routines themselves were clearly
kept separate from these design decisions and worked quite well
from a debian-based linux OS with only a minimal amount of work
to make the included terminal programs analyze and synthesize a
variety of sounds. Some of the original changes include incor-

3sound examples from the SMS website:
http://mtg.upf.edu/technologies/sms?p=Sound%20examples

4Pd externals sdiflists and oscbank can be found in the Pd svn
repository or:
http://mtg.upf.edu/people/eakin?p=Pd%20Stuff

porating Erik de Castro Lopo’s libsndfile5 for flexible sound file
input/output, changing to floating-point computation, and revamp-
ing memory allocation, while there is also a growing list of other
changes packaged with the library. Libsms aims to be a cross-
platform, GNU licensed C library, capable of handling many types
of spectral-based algorithms, usable within a variety of applica-
tions.

While there have been many advancements to SMS analysis
since 1990, the synthesis algorithms are virtually the same. Not
only do the synthesis routines in libsms produce high fidelity re-
sults, they use very little CPU power on modern day computers.

For the sinusoidal component, both table-lookup oscillator bank
and inverse-FFT methods can be used and are interchangeable.
For residual re-synthesis, the magnitude spectrum is approximated
with stochastic phases [19].

The analysis routines in libsms require many frames of data
due of a circular buffer6. On the other hand, the synthesis routines
are completely frame based, only needing one frame in history for
interpolation. In this sense, the synthesizer produces one frame of
latency before constructing an audio waveform.

Currently, there are 3 types of programs that use libsms: command-
line tools, a SWIG-wrapped python module (with examples), and
Pd externals. A brief description of the Pd externals, the smspd li-
brary, is given here, while information about to the command line
and python tools can be found in the library package or homepage.

Figure 1: Example Pd patch for loading a pre-existing file into
smsbuf, then synthesizing it with smssynth∼

There are 4 externals that all operate on a common smsbuf
5libsndfile homepage: http://www.mega-nerd.com/

libsndfile/
6While this circular buffer significantly improves results, current work

in modularizing the analysis processes in order to make this circular buffer
optional will make real-time analysis in Pd possible.

DAFX-3

http://mtg.upf.edu/technologies/sms?p=Sound%20examples
http://mtg.upf.edu/people/eakin?p=Pd%20Stuff
http://www.mega-nerd.com/libsndfile/
http://www.mega-nerd.com/libsndfile/

Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

buffer, similar to how Pd’s delread∼ and dealwrite∼: a unique
symbol is given as the object’s first argument, which is then stored
in a global list of symbols. This symbol, along with the globally
declared smsbuf class, is then used to pass around a pointer with a
structure of SMS data to other objects that contain the same sym-
bol as a first argument. An example Pd patch illustrating this sys-
tem is shown in figure 1. Here is a brief description of the current
objects:

smsbuf is a buffer for storing, recalling or viewing SMS data. It
can read and save data to file, print analysis information,
and send out data to Pd in lists.

smsanal can analyze either a file or Pd array with audio data in a
separate thread, storing the analysis data in an smsbuf.

smssynth∼ synthesizes SMS data within an smsbuf into a time-
domain waveform. The object reads a floating point index
at the beginning of every block (the IFFT hop size, inde-
pendent of Pd’s block-rate) and interpolates between two
concurrent data frames.

smsedit permanently modifies the data in an smsbuf. The edits
are frame-based.

The choice to make smsbuf an object within Pd was made
hoping that it would simplify further advancements in data mod-
ifications. While smsedit is currently a fairly basic external for
low level modifications, it requires very little code to access SMS
data. Furthermore, there are certain types of manipulations where
multiple data files are necessary. For example, smssynth∼ can
create ‘hybrids’ of two data sets by imposing a spectral envelope
of one sound onto the partials of another [16], requiring access
to two smsbuf objects. On the other hand, some effects, such
as polyphony and harmonization, are easily created with multiple
smssynth∼ objects that all have access to a single smsbuf.

4. SMS INSTRUMENT IMPLEMENTATION

This section describes an instrument created for performing with
SMS data in real-time with smspd. The Graphical interface in
python for interactive visualization is introduced. Video examples
can be watched online7.

4.1. Preparing the Analysis

Creating a good spectral representation of a sound with libsms is
not automatic. If a sound is harmonic, in a medium range of fre-
quencies, and stable (which does cover many sounds ranging from
voice to orchestral instruments), a good result can be obtained with
default parameters to the analyzer. For many interesting sounds,
one must inspect the sound prior to analysis (ex. a spectrogram
is useful) and adjust parameters to such an extent that it is not yet
beneficial to analyze the sound in a real-time environment. Once a
favorable analysis is stored to file, it can be recalled into an sms-
buf in an instant. Nonetheless, the ability to analyze sound from a
Pd array is implemented and deserves more experimentation.

4.2. Synthesis Parameters

The parameters for controlling the synthesis are few. They are
specified in real-time and are meant to interactively control the

7Video examples of real-time SMS instrument: http://mtg.upf.
edu/people/eakin?p=Examples

synthesis process. Regardless of exactly what value is given to any
of the parameters, synthesis will continue while audio computation
is turned on.

Time Frame

Time is specified by a frame number relating to the analysis win-
dow, usually between 2 and 20 milliseconds. The synthesis win-
dow hop size (in samples) effects the interpolation time between
frames. By default, the window size in smssynth∼ is 512 samples
or 10.6 milliseconds at a sampling rate of 48k/sec.

The next frame to synthesize is specified as a floating point
number; a new data frame is created by interpolating between two
integer frames. Because of this, one can either specify frames with
arbitrary distance inbetween (ex. frame 10.2 followed by 1010.5)
or by only a slight change (ex. frame 10.2 followed by frame 10.05
or 10.7). Any frame succession will produce a smooth additive
synthesis of naturally evolving partial frequencies (although large
jumps will obviously create artificial interpolations). Thus, long
files may contain too much material for performance and shorter
sounds with distinct timbres become favorable. Even a half second
sound file can be turned into an instrument that is interesting to
play for an entire musical work.

Frequency

Another parameter in the synthesizer is a frequency control, which
transposes every partial according to a well-tempered scale. As
discussed in Section 2.3, it may be desireable to maintain the orig-
inal sound’s spectral envelope in order to preserve timbre charac-
teristics. Spectral enveloping techniques have been added to lib-
sms, based on the discrete cepstrum spectral envelope described
best in [6]. It has been very useful for maintaining formant charac-
teristics in voice sounds, while it tends to distort other sound types
such as brass instruments. The current implementation allows for
both disregarding and maintaining the original spectral envelope.
seen

Gain

Gain is controlled by either global magnitude (multiplying the out-
put signal by a constant directly in Pd) or adding/reducing the
residual component’s magnitude. The gain of individual partials
can also be modified with smsedit (see sec. 4.6).

Synthesis Type

In some cases, it may be desirable to turn off either sinusoidal or
residual synthesis. Both component can be turned on or off in
real-time. This helps immensely to understand the quality of each
component’s representation. For instance, the residual synthesis
occasionally sounds like wind, thereby inadvertently making the
result sound more synthetic.

4.3. Wacom Tablet as Controller

While the choice for controller is largely up to the user when it
comes to Pd, ranging from store-bought electronics to table-top
LCD’s, this section discusses mapping choices for using a Wacom
Tablet as a high-precision controller for smssynth∼. Using a Wa-
com Tablet to control additive synthesis is not new [25]: Matthew
Wright has been performing with sinusoidal models in Max/MSP

DAFX-4

http://mtg.upf.edu/people/eakin?p=Examples
http://mtg.upf.edu/people/eakin?p=Examples

Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

for almost 10 years now. While he uses a tablet for similar reasons
- it has precise, absolute, and coupled parameters - the mapping
scheme presented here is much different. Wright uses a set of pre-
analyzed sounds in his performances, hand-drawn onto the tablet
surface in a grid-like fashion that makes a wide variety of sounds
available at any time. In the implementation presented in this pa-
per, one set of analysis data is mapped across the length of the
tablet, usually kept short enough that distinct sections in the data
can be consistently located by the stylus tip without much effort.

The tablet currently used is a Wacom Intous, 6x11 inches8.
This model provides a pressure control, which is naturally mapped
to the output signal’s gain. The synthesis frame is mapped to the
absolute X-axis and frequency transpose is mapped to the Y-axis,
centered around the middle of the tablet. The actual amount of
transposition is variable, depending on the effect desired. For in-
stance, an expressive vibrato is easier to control if the maximum
transposition is only about one whole-tone, but melodies are easier
to create with up to an octave transposition in either direction. A
midi keyboard has also been used for more discrete pitch transpo-
sitions according to the fundamental frequency of the harmonic.

The stylus tilt is also used, but as it is difficult to control both
absolute position and tilt simultaneously, it is better to map tilt to
parameters that do not dramatically effect the produced sound. For
example, X-tilt is optionally mapped to reverberation and Y-tilt to
residual magnitude.

The Wacom data is received in Pd using Hans Steiner’s linux-
event or hid objects, available in both Pd’s svn and Pd-extended.

The above mapping works well in most cases and is used by
default. Considering the flexibility of Pd, however, it is sometimes
preferable to map parameters to other controllers, a sequencer, or
even a signal analysis patch. In performances and recordings, the
first author changes the mapping scheme on the fly to incorporate
other processing techniques available in Pd.

4.4. Interactive Visual Representation

Controlling smssynth∼ is difficult without first becoming famil-
iar with the sonic features of an analysis. If one practices using the
above described system with a given sound, with time they will
grow familiar with the characteristic sections and develop an abil-
ity to intelligently perform with the material. However, this time
spent could be unnecessary. By watching a sonogram-like plot
of the sinusoidal tracks and a time-bar that indicates the variable
frame position, one only needs to perform with the instrument pre-
sented here for a short time before understanding the sonic features
at hand. In this section, we discuss an implementation of a cou-
pled visual aid to the SMS synthesizer presented above that makes
use of Pygame9, PyOpenGL10, and pysms, the SWIG [5] wrapped
libsms module.

According to the sonogram analogy, partial tracks are dis-
played from frame zero to the end of the file across the x-axis,
while frequency increases to a fixed point (usually around ten-
thousand hertz) along the y-axis. Color is used to represent the
decibel magnitude of each partial track. This creates easily recog-
nizable formant structures and onsets that are not cluttered by the
noise of a signal.

Originally, the display of every partial breakpoint was visually
movable, which was also coupled to the analysis data. This proved

8Wacom Intuos website: http://www.wacom.com/intuos/
9PyGame: http://www.pygame.org

10PyOpenGL: http://pyopengl.sourceforge.net/

burdensome because moving just one track did not create an in-
teresting sound effect, but only made one partial component a dis-
tinguishable sinewave in the midst of an acoustically rich sound.
Instead, it is more useful to modify groups of partials at a time,
making sure that changes occur gradually. The modified sections
are visualized by adding color to one of the RGB components,
making it easy to know when a deviation from the original sound
representation is about to be heard (see figure 2).

The current synthesis frame is visualized by a vertical line that
is gray when gain is zero (ex., the stylus pen is not touching the
tablet) and increasingly bright as gain increases. After moving the
time bar over a focused section of a sound a few times, one can
make a connection between the graphical representation and sonic
characteristics, thereby enhancing the ability to control the sound
synthesis.

The graphical interface needs its own copy of the analysis data
in memory, although this amount of memory consumption is not an
issue in today’s computer systems. While this creates maintenance
work for making sure modifications are properly represented, the
data needs to be accessed differently by synthesis routines (frame
to frame) than in the GUI (partial to partial). Therefore, the struc-
ture of code in both components is more efficient and easier to
read.

4.5. OSC: Linking Pd and Python

Pd and Python communicate using high-level OSC [24] modules:
In Pd, messages are sent using the sendOSC object that is avail-
able in both Pd’s svn and Pd-extended. In python, the messages
are received using a pure-python OSC implementation11. This
supports the decision to use multiple programming environments
that complement each other: Python provides a large selection of
graphical tools and is good for database management, while Pd is
designed for complex audio processes in real-time.

4.6. Modifications Separated from Synthesis

Pd is a good choice for high-level audio processing because it is
flexible and contains a strong time scheduler for both audio and
control data. It seems necessary, however, that all SMS-related
manipulations need to act on the low-level data buffer in C. Edit-
ing large data sets, like SMS data for example, in patches is cum-
bersome and bug prone. For this reason, the SMS synthesizer pre-
sented here assures that any SMS data frame can be synthesized
immediately with just a few parameters, while complicated modi-
fications are developed in other externals or libsms.

In smssynth∼’s audio loop, there are three main library func-
tions that do the necessary work (see the doxygen documentation
for details):

sms_interpolateFrames() takes a floating point index into a file
and produces an interpolated frame of data.

sms_modify() modifies the resulting frame based on a set of flags
within a parameter structure.

sms_synthesize() blindly synthesizes the interpolated and modi-
fied frame

Currently, modifications in sms_modify() are: pitch transpo-
sition, envelope maintenance, and superposition of an additional

11Python SimpleOSC module: www.ixi-software.net/
content/body_backyard_python.html

DAFX-5

http://www.wacom.com/intuos/
http://www.pygame.org
http://pyopengl.sourceforge.net/
www.ixi-software.net/content/body_backyard_python.html
www.ixi-software.net/content/body_backyard_python.html

Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

envelope from a separate analysis file. These modifications cre-
ate almost no CPU overhead. The system is meant to support a
growth of modifications within the library, without effecting the
functionality of existing applications.

The modifications available in smsedit are low level, gener-
alized methods that serve as an example/proof-of-concept of how
to access the data within an smsbuf. The edits are performed one
frame at a time, either on a range, every other, or a single partial
track. Modifications are currently limited to deterministic data, in-
cluding frequency and amplitude modifications by addition, multi-
plication, or introducing a random deviance. It is quite easy to add
new modifications at the C level when they come to mind, or build
more sophisticated, time-varying modifications within pd patches
(see figure 3).

Figure 2: The top image shows the interface for visualizing sinu-
soidal tracks extracted with libsms. The vertical bar represents the
current synthesis frame in Pd’s smssynth∼. Edits were made, us-
ing smsedit by multiplying consecutive frame’s partial frequencies
with values stored in a Pd table. The bottom image is the same
analysis data, zoomed in near the frame of synthesis.

Editing the data with smsedit creates irreversible distortions
to the unity of the original sound representation. For this reason,
smsbuf has the ability to keep a ‘backup’ of the original analysis
that can be recalled. With a ‘converge’ message to smsedit, the
data can gradually shift towards the original values. With this in
combination with the low-level editing functionality in smsedit,
one can write Pd abstracts to perform interesting modifications that
distort sections of the spectral model while leaving others, and then
return the model to its unity. Such distortions sound very electronic
while maintaining a sense of acoustic structure from the section of
the model unmodified.

5. REFLECTIONS AND FUTURE WORK

5.1. New Achievements in Interactive Control of SMS Data

As mentioned in section 4.2, this real-time implementation of SMS
synthesis provides for great flexibility in time and frequency, cre-
ating a powerful interaction with the sound. Since partial tracks
are interpolated on the fly from one frame to the next (with appro-
priate phases), one can easily improvise for an arbitrary length of
time with only a model that contains a few interesting features (see
figure 4).

It is best to constantly provide new control data to the syn-
thesizer. If time and frequency are both kept stationary, the re-
sulting synthesis immediately sounds stale, as the synthesizer is

Figure 3: Example of smsedit, using a Pd array as a template for
transposing consecutive frame data. The modification is visualized
in figure 2.

re-iterating over the same set of data and there is no partial move-
ment. This is not a hard task with the Wacom Tablet, since time,
frequency and magnitude are all coupled with any small gesture
from the stylus. Articulations are straightforward and natural; a
very realistic vibrato is produced by moving the stylus in a circu-
lar motion around a desired pitch.

5.2. Interface Improvements

PyOpenGL is too slow to interactively modify partial tracks. There
are still many desireable manipulations that are not yet feasible to
visualize, such as bending or warping groups of sinusoidal tracks
in real-time. If one takes advantage of OpenGL display lists to
pre-compile the plotting commands, CPU usage is reduced from
around 50% to around 2%. Yet, one can not change the visual
aspects of the independent partials in a display list, thereby loosing
many interesting benefits of the graphical representation. A port of
the python code to C/C++ is soon to be undergone, where drawing
without display lists will be more efficient. As the PyGame code is
a direct wrapper around libSDL, the code will be nearly identical
as the prototype in python.

5.3. More Modifications

Manually editing the SMS data has usually resulted in turning
an acoustic sound into an electric one. This may be desirable in
some instances, but if an acoustic coherence is sought, higher level
manipulations that take place over time need to be implemented
within libsms. One research direction is towards extracting ‘fea-
ture templates’ from analysis data that can then be generically used

DAFX-6

Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

Figure 4: An example showing time / frequency flexibility.: On the
top is a representation of singing voice about 3 seconds long. The
middle two x/y plots are 10 seconds recorded from the stylus pen,
controlling time (index into the model) and frequency as described.
The bottom plot shows the resulting tracks that were synthesized
according to these manipulations, containing intricacies similar
to the original.

to modify a sound representation interactively. Then, we hope to
extend the interactive control of our system to high level modifica-
tions that will yield to greater possibilities in expression.

6. CONCLUSIONS

In this paper we introduced a method for controlling SMS syn-
thesis in a flexible way that allows for real-time interaction, based
on a well-tested and now re-factored SMS code base. The flexi-
bility given to the order of synthesized frames provides a frame-
work for exploring spectral synthesis in new and innovative ways.
With the re-birth of libsms, its wrapper in python, and real-time
externals for Pd, there is new room for exploring state-of-the-art
spectral processing techniques. We have discussed methods for
adding more interaction and expressive capabilities to the instru-
ment presented here. There is much work to undergo before the
true benefits of this system can be fully realized.

7. ACKNOWLEDGMENTS

Many thanks to Miller Puckette, Tom Erbe, and Shlomo Dubnov.
Thanks to everyone at MTG, especially Günter Geiger whose help
in design ideas is indispensable. Thanks to John Glover for his
contributions in libsms.

8. REFERENCES

[1] J. Allen. Short term spectral analysis, synthesis, and mod-
ification by discrete fourier transform. IEEE Transactions
on Acoustics, Speech and Signal Processing, 25(3):235–238,
1977.

[2] X. Amatriain and P. Arumi. Developing cross-platform au-
dio and music applications with the clam framework. In
Proceedings of International Computer Music Conference,
pages 403–410, Barcelona, Spain, 2005.

[3] X. Amatriain, J. Bonada, A. Loscos, J. L. Arcos, and V. Ver-
faille. Content-based transformations. Journal of New Music
Research, 32(1):95–114, 2003.

[4] X. Amatriain, J. Bonada, and X. Serra. Spectral Processing,
pages 373–438. John Wiley & Sons Publishers, 2002.

[5] D. M. Beazley. SWIG: an easy to use tool for integrating
scripting languages with c and c++. In Proceedings of the
4th conference on USENIX Tcl/Tk Workshop, 1996 - Volume
4, pages 15–15, Monterey, California, 1996. USENIX Asso-
ciation.

[6] O. Cappe and E. Moulines. Regularization techniques for
discrete cepstrum estimation. Signal Processing Letters,
IEEE, 3(4):100–102, 1996.

[7] K. Fitz, L. Haken, and P. Christensen. Transient preservation
under transformation in an additive sound model. In Proc.
International Computer Music Conference, Berlin, Germany,
2000.

[8] A. Freed, X. Rodet, and P. Depalle. Synthesis and control of
hundreds of sinusoidal partials on a desktop computer with-
out custom hardware. volume 2, pages 1024–30, Santa Clara,
CA, 1993. DSP Associates.

[9] D. Jaffe and L. Boynton. An overview of the sound and mu-
sic kits for the NeXT computer. Computer Music Journal,
13(2):48–55, 1989. ArticleType: primary_article / Full pub-
lication date: Summer, 1989 / Copyright c© 1989 The MIT
Press.

[10] M. Klingbeil. Software for spectral analysis, editing, and
synthesis. Barcelona, Spain, 2005.

[11] A. Loscos, J. Bonada, M. Boer, X. Serra, and P. Cano. Voice
morphing system for impersonating in karaoke applications.
Berlin, Germany, 2000.

[12] R. McAulay and T. Quatieri. Speech analysis/synthesis based
on a sinusoidal representation. IEEE Transactions on Acous-
tics, Speech and Signal Processing, 34(4):744–754, 1986.

[13] M. S. Puckette. Pure data: Another integrated computer mu-
sic environment. In Proceedings of the 1997 International
Computer Music Conference, pages 224–227, San Francisco,
CA, 1996.

[14] E. Resina. SMS composer and SMS conductor: Applica-
tions for spectral modeling synthesis composition and perfor-
mance. In Proceedings of 1998 Digital Audio Effects Work-
shop, 1998.

[15] X. Serra. A System for Sound Analysis-Transformation-
Synthesis based on a Deterministic plus Stochastic Decom-
position. PhD thesis, CCRMA, Dept. of Music, Stanford
University, 1989.

[16] X. Serra. Sound hybridization techniques based on a deter-
ministic plus stochastic decomposition model. In Proceed-
ings of the 1994 International Computer Music Conference,
Denmark, 1994.

[17] X. Serra. Musical Sound Modeling with Sinusoids plus
Noise, pages 91–122. Studies on New Music Research.
Swets & Zeitlinger, 1997.

DAFX-7

Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

[18] X. Serra and J. Bonada. Sound transformations based on
the SMS high level attributes. In Proceedings of the Digital
Audio Effects Workshop, Barcelona, Spain, 1998.

[19] X. Serra and J. S. III. Spectral modeling synthesis: A
sound analysis/synthesis system based on a deterministic
plus stochastic decomposition. Computer Music Journal,
pages 12–24, 1990.

[20] J. O. Smith, X. Serra, C. for Computer Research in Music,
Acoustics, and S. University. PARSHL: An analysis/synthesis
program for non-harmonic sounds based on a sinusoidal rep-
resentation. CCRMA, Dept. of Music, Stanford University,
1987.

[21] T. S. Verma and T. H. Y. Meng. Extending spectral model-
ing synthesis with transient modeling synthesis. Computer
Music Journal, 24(2):47–59, 2000.

[22] M. Wright, A. Chaudhary, A. Freed, S. Khoury, and D. Wes-
sel. Audio applications of the sound description interchange
format standard. In proceedings of the Audio Engineering
Society 107th Convention, 1999.

[23] M. Wright, R. Dudas, S. Khoury, R. Wang, and D. Zicarelli.
Supporting the sound description interchange format in the
Max/MSP environment. In Proc. ICMC, 1999.

[24] M. Wright and A. Freed. Open sound control: A new
protocol for communicating with sound synthesizers. page
101–104, 1997.

[25] M. Zbyszynski, M. Wright, A. Momeni, and D. Cullen. Ten
years of tablet musical interfaces at CNMAT. In Proceedings
of the 7th international conference on New interfaces for Mu-
sical Expression, pages 100–105, New York, 2007. ACM.

DAFX-8

	1 Introduction
	2 Background and Related Work
	2.1 Sinusoids Plus Noise Model
	2.2 Real-Time Flexibility with Magnitude Only Analysis / Synthesis
	2.3 Modifications of the Analysis Data
	2.4 Software Approaches to Synthesizing SMS Data

	3 The (re)Birth of libsms and [smspd]
	4 SMS Instrument Implementation
	4.1 Preparing the Analysis
	4.2 Synthesis Parameters
	4.3 Wacom Tablet as Controller
	4.4 Interactive Visual Representation
	4.5 OSC: Linking Pd and Python
	4.6 Modifications Separated from Synthesis

	5 Reflections and Future Work
	5.1 New Achievements in Interactive Control of SMS Data
	5.2 Interface Improvements
	5.3 More Modifications

	6 Conclusions
	7 Acknowledgments
	8 References

